Acta Crystallographica Section C

Crystal Structure

Communications
ISSN 0108-2701

Bis(1-phenylethylammonium) hexachloridostannate(IV) and bis(2-phenylethylammonium) hexachloridostannate(IV)

David G. Billing, ${ }^{\text {a }}$ Andreas Lemmerer ${ }^{\text {a* }}$ and Melanie Rademeyer ${ }^{\text {b }}$

Abstract

${ }^{\text {a M Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, }}$ Private Bag 3, PO Wits 2050, South Africa, and ${ }^{\mathbf{b}}$ School of Chemistry, University of KwaZulu-Natal, Pietermaritzburg Campus, Private Bag X01, Scottsville 3209, South Africa Correspondence e-mail: anderl@chem.wits.ac.za

Received 21 December 2006
Accepted 30 January 2007
Online 17 February 2007
The crystal structures of the two isomers bis(1-phenylethylammonium) hexachloridostannate(IV) and bis(2-phenylethylammonium) hexachloridostannate(IV), both $\left(\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{~N}\right)_{2^{-}}$ [SnCl_{6}], exhibit alternating organic and inorganic layers, which interact via $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonding. The inorganic layer contains an extended two-dimensional hydrogen-bonded sheet. The Sn atom in the 1-phenylethylammonium salt lies on an inversion centre.

Comment

A significant number of organic/inorganic compounds of the formula $\left(R-\mathrm{NH}_{3}\right)_{2}\left[\operatorname{Sn} X_{4}\right]$ (where X is $\mathrm{F}, \mathrm{Cl}, \mathrm{Br}$ or I) have previously been investigated structurally because of their interesting magnetic and optical properties (Mitzi et al., 1998; Raptopoulou et al., 2002). In contrast, compounds of the formula $\left(R-\mathrm{NH}_{3}\right)_{2}\left[\mathrm{Sn} X_{6}\right]$ have not been studied extensively. The crystal structures of only four primary n-alkylammonium hexachloridotin(IV) compounds - with organic chain lengths ranging from one to six (Kitahama et al., 1979; Knop et al., 1983; Eulleuch et al., 1996; Lemmerer et al., 2007) - and two primary arylammonium hexachloridotin(IV) organic-inorganic hybrid compounds (Rademeyer, 2004a,b) have been reported in the literature.

In the present investigation, two novel crystal structures of organic-inorganic hybrid materials are reported, namely bis(1-phenylethylammonium) hexachloridostannate(IV), (I), and bis(2-phenylethylammonium) hexachloridostannate(IV), (II). A comparison of the structures reveals the effect of a slight change in the cation and the introduction of a chiral cation on the packing of molecular ions in the crystal structures.

The structures of (I) and (II), in which the cations are structural isomers, can be compared with that of bis(benzyl-
ammonium) hexachloridostannate(IV), (III) (Rademeyer, 2004a), as they form a logical series; relative to (III), (I) has an additional methyl group on the C atom adjacent to the ammonium group, while the arylammonium chain in (II) is longer by one methylene group than that in (III).

(I)

(II)

The molecular geometry and atomic numbering schemes employed for (I) and (II) are illustrated in Fig. 1. In the solid state, (I) and (II) self-assemble into structures consisting of alternating organic layers, made up of the ammonium cations bis(1-phenylethylammonium) [for (I)] and bis(2-phenylethylammonium) [for (II)], and inorganic layers, made up of isolated SnCl_{6} octahedra. The layers stack along the a axis in (I) and along the b axis in (II), as illustrated in Figs. 2 and 3, respectively. In both structures, the inorganic layer and organic layer interact via hydrogen bonds to form a two-dimensional network parallel to the $b c$ plane in (I) and parallel to the $a c$ plane in (II).

The inorganic part of the asymmetric unit of (I) contains an Sn atom on a centre of inversion at $\left(\frac{1}{2}, 0, \frac{1}{2}\right)$ and three Cl atoms in general positions. The inversion centre generates an SnCl_{6} octahedron, in which the three unique $\mathrm{Sn}-\mathrm{Cl}$ bond lengths are 2.4270 (11), 2.4310 (12) and 2.4557 (12) \AA (see Table 3), and the cis $\mathrm{Cl}-\mathrm{Sn}-\mathrm{Cl}$ bond angles range from 89.56 (4) to $90.44(4)^{\circ}$, indicating only slight distortion from ideal octahedral geometry. Each unit cell contains one complete inorganic layer [mean plane equation: 12.217 (2) $x=6.109$ (1) \AA; symmetry operators of atoms used: $\operatorname{Sn} 1(x, y, z),(x, 1+y, z)$, $\left.\left(1-x, \frac{1}{2}+y, \frac{1}{2}-z\right),\left(1-x, \frac{1}{2}+y, \frac{3}{2}-z\right)\right]$ and successive layers are separated by the unit-cell repeat a of 12.243 (2) \AA.

The organic layer of (I) has one independent 1-phenylethylammonium cation on a general position. The aromatic ring plane [C3-C8; mean plane equation: 8.68 (3) $x-$ 2.75 (2) $y-8.75$ (6) $z=2.94$ (4) $\AA]$ is inclined at an angle of $48.0(2)^{\circ}$ to the plane of the inorganic layer. Within the organic layers, adjacent aromatic rings are separated by a centroid-tocentroid distance of $5.268 \AA$, clearly far too large to be considered as a π-stacking interaction.

The hydrogen-bonding interactions linking the organic layer and the inorganic layer involve the three H atoms on the ammonium group. There are two simple and one bifurcated hydrogen bond between one cation and three different SnCl_{6} octahedra (Fig. 4 and Table 1).

Figure 1
Views of the structures of $(a)(\mathrm{I})$ and (b) (II), showing the atom-numbering schemes. Displacement ellipsoids are shown at the 50% probability level. [Symmetry code: (ii) $-x+1,-y+1,-z+1$.]

Figure 2
The packing of (I), viewed along the b axis. The 1-phenylethylammonium cations are non-interdigitated.

The asymmetric unit of (II) comprises two crystallographically independent 2-phenylethylammonium cations, labelled cat 1 (containing atom N 1) and cat2 (containing atom N 2), and one octahedral $\left[\mathrm{SnCl}_{6}\right]^{2-}$ anion, the atoms of which lie in general positions. Each unit cell contains two complete inorganic layers [mean plane equation: 25.45 (1) y 1.660 (2) $z=11.893$ (5) \AA; symmetry operators of atoms used: $\operatorname{Sn1}(x, y, z),(1+x, y, z),(-x, 1-y, 1-z),(1-x, 1-y$, $1-z)]$. The $\mathrm{Sn}-\mathrm{Cl}$ bond lengths range from 2.4118 (16) to 2.4342 (17) \AA (see Table 3) and the cis $\mathrm{Cl}-\mathrm{Sn}-\mathrm{Cl}$ angles from 88.68 (6) to $91.61(7)^{\circ}$, indicating small distortions from ideal octahedral geometry.

Within the organic layer of (II), the cations pack in an interdigitated fashion. The planes of the aromatic rings of the two cations are tilted by 80.6 (2) [for $\mathrm{C} 3 A-\mathrm{C} 8 A$; mean plane equation: 6.66 (1) $x-0.06$ (9) $y+5.03$ (4) $z=9.90(8) \AA]$ and $86.5(2)^{\circ}$ [for $\mathrm{C} 3 B-\mathrm{C} 8 B$; mean plane equation:

Figure 3
The packing of (II), viewed along the a axis. The 2-phenylethylammonium cations are interdigitated.
6.59 (1) $x+2.72$ (8) $y-5.13$ (3) $z=2.20$ (6) Å] relative to the inorganic layer plane, and by $50.6(2)^{\circ}$ relative to one another. Weak $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions are present in this layer, with atom $\mathrm{C} 4 A$ interacting with the centroid $C g 2$ of the aromatic group $\mathrm{C} 3 B-\mathrm{C} 8 B$ (symmetry operator: $x, \frac{3}{2}-y,-\frac{1}{2}+z$) through atom $\mathrm{H} 4 A\left(\mathrm{CH} \cdots \mathrm{Cg} 2=2.82 \AA\right.$ and $\left.\mathrm{C}-\mathrm{H} \cdots \mathrm{Cg} 2=133^{\circ}\right)$, and atom $\mathrm{C} 7 A$ interacting with the centroid $C g 2$ of another ring (symmetry operator: $-1+x, y,-1+z$) through atom $\mathrm{H} 7 A$ $\left(\mathrm{CH} \cdots \mathrm{Cg} 2=2.83 \AA\right.$ and $\left.\mathrm{C}-\mathrm{H} \cdots \mathrm{Cg} 2=136^{\circ}\right)$ (see Fig. 5).

In (II), the two crystallographically independent cations display the same hydrogen-bonding interactions with the $\left[\mathrm{SnCl}_{6}\right]^{2-}$ anions. Atoms N1 and N2 interact with three anions each through three simple hydrogen bonds (Fig. 6 and Table 2). The $\mathrm{N} 1-\mathrm{H} 1 C \cdots \mathrm{Cl} 2^{\mathrm{ii}}$ hydrogen bond (symmetry code as in Table 2) has a hydrogen-acceptor distance of $2.92 \AA$ and can be classified as a short contact.

A notable difference between the three structures lies in the volume of the unit cell, which is approximately doubled in (II) and (III) compared with (I). The organic cations in (I) and (III) have approximately the same length, but because the cations are non-interdigitated in (I) and interdigitated in (III), the interlayer spacing of (III) is shorter than that of (I) (see the values in Table 3). Although the cation in (II) is longer than that in (I), the two interlayer spacings are similar as a result of the interdigitation of the organic layer of (II), and the fact that the rings are tilted at different angles to the inorganic layer, thus compensating for the different packing arrangements of the organic layer.

In (I), neighbouring cations participate in hydrogen bonding with different inorganic layers, thus alternating in orientation, as shown in Fig. 2. However, in (II), pairs of cations point in the same direction and neighbouring pairs alternate in orientation (Fig. 3), and the same is observed for (III). In all three structures, the hydrogen bonds give rise to a complex hydrogen-bonded network extending in two dimensions. The packing efficiency of (I) is slightly lower than that of (II) and (III) (Table 3), possibly because the sterically hindering methyl group prevents more efficient packing.

In summary, slight changes to the cation cause subtle differences in the structures of compounds (I), (II) and (III),

Figure 4
A magnified view of the hydrogen bonding in (I) between the 1-phenylethylammonium cation and three $\left[\mathrm{SnCl}_{6}\right]^{2-}$ anions. [Symmetry codes: (i) $x,-y+\frac{1}{2}, z-\frac{1}{2}$; (ii) $-x+1,-y+1,-z+1$.]

Figure 5

The $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions in (II) between cat1 and cat2 (see Comment). [Symmetry codes: (v) $x,-y+\frac{3}{2}, z-\frac{1}{2}$; (vi) $x-1, y, z-1$.]

Figure 6
A magnified view of the hydrogen bonding in (II) between the two 2-phenylethylammonium cations and five $\left[\mathrm{SnCl}_{6}\right]^{2-}$ anions. [Symmetry codes: (i) $x+1, y, z$; (ii) $-x+1,-y+1,-z+1$; (iii) $-x,-y+1,-z+1$; (iv) $-x+1,-y+1,-z+2$.]
involving changes in interdigitation and cation orientation. Overall, however, the structures are still very similar, indicating that self-assembly in the hydrophobic and hydrophilic layers and hydrogen-bond formation are the major driving forces that dictate the packing.

Experimental

For the preparation of (I), 1-phenylethylamine ($0.068 \mathrm{~g}, 0.561 \mathrm{mmol}$) was combined with $\operatorname{tin}(\mathrm{II})$ chloride $(0.054 \mathrm{~g}, 0.259 \mathrm{mmol})$ and dissolved in concentrated $\mathrm{HCl}(5 \mathrm{ml}, 0.057 \mathrm{~mol}, 33 \%$, Aldrich $)$. The resulting solution was left open to the atmosphere and crystals grew by slow evaporation. A colourless plate-like crystal was selected for the X-ray diffraction study. 2-Phenylethylammonium chloride was prepared by the dropwise addition of excess concentrated HCl $(4.82 \mathrm{ml}, 0.059 \mathrm{~mol}, 37 \%$, Aldrich) to a solution of 2-phenylethylamine ($2.4 \mathrm{ml}, 0.020 \mathrm{~mol}, 99 \%$, Aldrich) in chloroform ($10 \mathrm{ml}, 99 \%$, Saarchem). The resulting precipitate was filtered off and left to dry. Crystals of (II) were grown by slow evaporation to total dryness of an aqueous solution of stoichiometric amounts (1:2) of tin(II) chloride $(0.065 \mathrm{~g}, 0.340 \mathrm{mmol})$ and 2-phenylethylammonium chloride $(0.107 \mathrm{~g}$, 0.679 mmol). A colourless crystal was selected for the X-ray diffraction study.

Compound (I)

Crystal data

$\left(\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{~N}\right)_{2}\left[\mathrm{SnCl}_{6}\right]$
$M_{r}=575.76$
Monoclinic, $P 2_{1} / c$
$a=12.243$ (2) A
$b=7.1124$ (13) \AA
$c=13.777$ (3) \AA
$\beta=93.697(3)^{\circ}$
$V=1197.2(4) \AA^{3}$

$$
Z=2
$$

$D_{x}=1.597 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
$\mu=1.74 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Plate, colourless
$0.48 \times 0.28 \times 0.13 \mathrm{~mm}$

Data collection

Bruker APEXII CCD area-detector diffractometer
ω scans
Absorption correction: integration
(XPREP; Bruker, 1999)
$T_{\text {min }}=0.443, T_{\text {max }}=0.821$

> 6461 measured reflections
> 2228 independent reflections
> 1736 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.067$
> $\theta_{\max }=25.5^{\circ}$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.031$
$w R\left(F^{2}\right)=0.097$
$S=1.30$
2228 reflections
103 parameters

H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+2.608 P\right]$
where $P \stackrel{\mathrm{o}}{=}\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\text {max }}=0.96$ e \AA^{-3}
$\Delta \rho_{\min }=-0.50 \mathrm{e}_{\mathrm{max}} \AA^{-3}$

Table 1
Hydrogen-bond geometry ($\AA \mathrm{A}^{\circ}$) for (I).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 A \cdots \mathrm{Cl} 2^{\mathrm{i}}$	0.89	2.68	$3.302(4)$	128
$\mathrm{~N} 1-\mathrm{H} 1 A \cdots \mathrm{Cl} 1$	0.89	2.76	$3.331(4)$	123
$\mathrm{~N} 1-\mathrm{H} 1 B \cdots \mathrm{Cl} 2^{\mathrm{ii}}$	0.89	2.41	$3.289(4)$	170
$\mathrm{~N} 1-\mathrm{H} 1 C \cdots \mathrm{Cl} 3$	0.89	2.54	$3.302(5)$	144

Symmetry codes: (i) $x,-y+\frac{1}{2}, z-\frac{1}{2}$; (ii) $-x+1,-y+1,-z+1$.

Compound (II)

Crystal data

$\left(\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{~N}\right)_{2}\left[\mathrm{SnCl}_{6}\right]$	$Z=4$
$M_{r}=575.76$	$D_{x}=1.695 \mathrm{Mg} \mathrm{m}^{-3}$
Monoclinic, $P 2_{1} / c$	Mo $K \alpha$ radiation
$a=7.335(3) \AA \AA(4) \AA$	$\mu=1.85 \mathrm{~mm}^{-1}$
$b=25.695(4)$	$T=293(2) \mathrm{K}$
$c=11.974(2) \AA$	Plate, colourless
$\beta=90.03(2)^{\circ}$	$0.2 \times 0.2 \times 0.15 \mathrm{~mm}$
$V=2256.8(11) \AA^{3}$	
Data collection	
Oxford Excalibur2 CCD area-	14565 measured reflections
\quad detector diffractometer	4159 independent reflections
$\omega-2 \theta$ scans	3144 reflections with $I>2 \sigma(I)$
Absorption correction: multi-scan	$R_{\text {int }}=0.038$
$\quad($ WinGX $;$ Farrugia, 1999$)$	$\theta_{\text {max }}=25.5^{\circ}$
$T_{\text {min }}=0.709, T_{\text {max }}=0.753$	

Refinement

Refinement on F^{2}

$$
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.049 P)^{2}\right.
$$

$$
+6.342 P]
$$

where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.008$
$\Delta \rho_{\max }=1.01 \mathrm{e}^{-3}$
$w R\left(F^{2}\right)=0.122$
$S=1.05$
$\Delta \rho_{\min }=-1.00 \mathrm{e}^{-3}$
4159 reflections
202 parameters

H-atom parameters constrained
Table 2
Hydrogen-bond geometry ($\AA,^{\circ}$) for (II).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 A \cdots \mathrm{Cl} 5$	0.89	2.80	$3.421(6)$	128
$\mathrm{~N} 1-\mathrm{H} 1 B \cdots \mathrm{Cl} 5^{\text {ii }}$	0.89	2.74	$3.548(6)$	152
$\mathrm{~N} 1-\mathrm{H} 1 C \cdots \mathrm{Cl} 2^{\text {iii }}$	0.89	2.92	$3.606(6)$	135
$\mathrm{~N} 2-\mathrm{H} 2 A \cdots \mathrm{Cl} 3$	0.89	2.81	$3.362(6)$	122
$\mathrm{~N} 2-\mathrm{H} 2 B \cdots \mathrm{Cl} 3^{\text {iv }}$	0.89	2.56	$3.443(6)$	171
$\mathrm{~N} 2-\mathrm{H} 2 C \cdots \mathrm{Cl}^{\mathrm{i}}$	0.89	2.70	$3.546(6)$	159

Symmetry codes: (i) $x+1, y, z$; (ii) $-x+1,-y+1,-z+1$; (iii) $-x,-y+1,-z+1$; (iv) $-x+1,-y+1,-z+2$;

H atoms were placed geometrically and refined in idealized positions in the riding-model approximation, with $\mathrm{C}-\mathrm{H}=0.93(\mathrm{ArH})$, $0.98(\mathrm{CH}), 0.97\left(\mathrm{CH}_{2}\right)$ or $0.96 \AA\left(\mathrm{CH}_{3}\right)$ and $\mathrm{N}-\mathrm{H}=0.89 \AA ; U_{\text {iso }}(\mathrm{H})$ values were set at $1.5 U_{\text {eq }}(\mathrm{N}), 1.5 U_{\text {eq }}$ (methyl C) or $1.2 U_{\text {eq }}(\mathrm{C})$. The highest residual peaks in the final ΔF syntheses lie $1.07 \AA{ }_{\mathrm{eq}}$ from Cl 2 in (I) and $1.67 \AA$ from Cl 5 in (II).

Table 3
Comparative geometric parameters ($\AA{ }^{\circ},^{\circ}$) in (I), (II) and (III).

Parameter	(I)	(II)	$(\text { III })^{a}$
Sn1-Cl1	$2.4270(11)$	$2.4244(16)$	$2.4242(12)$
Sn1-Cl2	$2.4557(12)$	$2.4316(16)$	$2.4590(12)$
Sn1-Cl3	$2.4310(11)$	$2.4342(16)$	$2.4064(14)$
Sn1-Cl4	-	$2.4257(16)$	$2.4244(14)$
Sn1-Cl5	-	$2.4291(16)$	$2.4415(12)$
Sn1-Cl6	-	$2.4118(16)$	$2.4271(13)$
Interplanar spacing	$12.243(2)$	$12.848(4)$	$11.016(7)$
Packing efficiency	0.648	0.689	0.689

Note: (a) $\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{NH}_{3}\right)_{2}\left[\mathrm{SnCl}_{6}\right]$ [Rademeyer, 2004a; Cambridge Structural Database (Allen, 2002) refcode INIXOS].

For compound (I), data collection: SMART-NT (Bruker, 1998); cell refinement: SAINT-Plus (Bruker, 1999); data reduction: SAINTPlus. For compound (II), data collection: CrysAlis CCD (Oxford Diffraction 2003); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2003). For both compounds, program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2003).

MR acknowledges funding received for this work from the University of KwaZulu-Natal Research Office and the National Research Foundation (GUN:2054350). DGB thanks the University of the Witwatersrand and the National Research Foundation (GUN:2069064) for funding.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: BM3024). Services for accessing these data are described at the back of the journal.

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Brandenburg, K. (1999). DIAMOND. Version 2.1e. Crystal Impact GbR, Bonn, Germany.
Bruker (1998). SMART-NT. Version 5.050. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (1999). SAINT-Plus. Version 6.02 (including XPREP). Bruker AXS Inc., Madison, Wisconsin, USA.
Eulleuch, H., Kamoun, M., Daoud, A. \& Jouini, T. (1996). Phys. Status Solidi $A, 157,3-9$.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Kitahama, K., Kiriyama, H. \& Baba, Y. (1979). Bull. Chem. Soc. Jpn, 52, 324 328.

Knop, O., Cameron, T. S., James, M. A. \& Falk, M. (1983). Can. J. Chem. 61, 1620-1646.
Lemmerer, A., Billing, D. G. \& Reisinger, S. A. (2007). Acta Cryst. C63, m97m100.
Mitzi, D. B., Liang, K. \& Wang, S. (1998). Inorg. Chem. 37, 321-327.
Oxford Diffraction (2003). CrysAlis CCD and CrysAlis RED. Version 1.170. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.
Rademeyer, M. (2004a). Acta Cryst. C60, m55-m56.
Rademeyer, M. (2004b). Acta Cryst. E60, m345-m347.
Raptopoulou, C. P., Terzis, A., Mousdis, G. A. \& Papavassiliou, G. C. (2002). Z. Naturforsch. Teil B, 57, 645-650.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

